Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(5): 1117-1120, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426952

RESUMEN

We report a tunable spatiotemporally mode-locked large-mode-area Er:ZBLAN fiber laser based on the nonlinear polarization rotation technique. A diffraction grating is introduced to select the operating wavelength. Under the spectral and spatial filtering effects provided by the grating and spatial coupling respectively, stable ps-level spatiotemporally mode-locked pulses around 2.8 µm with a repetition rate of 43.4 MHz are generated. Through a careful adjustment of the grating, a broad wavelength tuning range from 2747 to 2797 nm is realized. To the best of our knowledge, this is the first wavelength-tunable spatiotemporally mode-locked fiber laser in the mid-infrared region.

2.
Opt Express ; 32(5): 8364-8378, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439493

RESUMEN

In this paper, we demonstrate a simplified one-to-many scheme for efficient mid-infrared (MIR) parametric conversion. Such a scheme is based on a continuous wave (CW) single longitudinal mode master oscillator power-amplifier (MOPA) fiber system as the signal source and a picosecond pulsed MOPA fiber system, exhibiting multiple longitudinal modes, as the pump source. The signal and pump beams are combined and co-coupled into a piece of 50-mm long 5% MgO-doped PPLN crystal for the parametric conversion. As high as ∼3.82 W average power at a central idler wavelength of ∼3.4 µm is achieved when the launched pump and signal powers are ∼41.73 and ∼11.45 W, respectively. Above some threshold value, the delivered idler power shows a roll-over effect against the signal power and saturation-like effect against the pump power. Consequently, the highest conversion efficiency is observed at such a threshold pump power. To the best of our knowledge, our result represents the highest average power produced from any single-pass parametric conversion source with >3 µm idler wavelength feeding with a CW signal. Moreover, our proposed scheme can simplify the design of parametric conversion system significantly and meanwhile make the system more robust in applications. This is attributed to two main aspects. Firstly, the scheme's one-to-many feature can reduce wavelength sensitivity remarkably in the realization of quasi-phase-matching. Secondly, for moderate power requirement it does not always require a high peak power synchronized pulsed signal source; a CW one can be an alternative, thereby making the system free from complex time synchronization and the related time jitter.

3.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37421082

RESUMEN

Recently, laser polishing, as an effective post-treatment technology for metal parts fabricated by laser powder bed fusion (LPBF), has received much attention. In this paper, LPBF-ed 316L stainless steel samples were polished by three different types of lasers. The effect of laser pulse width on surface morphology and corrosion resistance was investigated. The experimental results show that, compared to the nanosecond (NS) and femtosecond (FS) lasers, the surface material's sufficient remelting realized by the continuous wave (CW) laser results in a significant improvement in roughness. The surface hardness is increased and the corrosion resistance is the best. The microcracks on the NS laser-polished surface lead to a decrease in the microhardness and corrosion resistance. The FS laser does not significantly improve surface roughness. The ultrafast laser-induced micro-nanostructures increase the contact area of the electrochemical reaction, resulting in a decrease in corrosion resistance.

4.
Opt Express ; 31(12): 19886-19896, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381394

RESUMEN

Surface-enhanced Raman scattering (SERS) sensors combined with superhydrophobic/superhydrophilic (SH/SHL) surfaces have shown the ability to detect ultra-low concentrations. In this study, femtosecond laser fabricated hybrid SH/SHL surfaces with designed patterns are successfully applied to improve the SERS performances. The shape of SHL patterns can be regulated to determine the droplet evaporation process and deposition characteristics. The experimental results show that the uneven droplet evaporation along the edges of non-circular SHL patterns facilitates the enrichment of analyte molecules, thereby enhancing the SERS performance. The highly identifiable corners of SHL patterns are beneficial for capturing the enrichment area during Raman tests. The optimized 3-pointed star SH/SHL SERS substrate shows a detection limit concentration as low as 10-15 M by using only 5 µL R6G solutions, corresponding to an enhancement factor of 9.73 × 1011. Meanwhile, a relative standard deviation of 8.20% can be achieved at a concentration of 10-7 M. The research results suggest that the SH/SHL surfaces with designed patterns could be a practical approach in ultratrace molecular detections.

5.
Opt Express ; 29(7): 10172-10180, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820150

RESUMEN

Herein, we presented a high energy noise-like (NL) pulse Tm-doped fiber laser (TDFL) system. Relying on the nonlinear amplifying loop mirror (NALM), stable noise-like pulses with coherence spike width of ∼317 fs and envelope width of ∼4.2 ns were obtained from an all polarization-maintaining fiberized oscillator at central wavelength of ∼1946.4 nm with 3 dB bandwidth of ∼24.9 nm. After the amplification in an all-fiberized TDF amplifier system, the maximum average output power of ∼32.8 W and pulse energy of ∼10.1 µJ were obtained, which represents the highest pulse energy of NL pulse at ∼2 µm, to the best of our knowledge. We believe that the high energy NL pulse source has the potential application in mid-infrared supercontinuum generation.

6.
Appl Opt ; 60(2): 257-263, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33448947

RESUMEN

We experimentally achieve over 10 W linearly polarized supercontinuum (SC) generation in a polarization-maintaining (PM) erbium-doped fiber (EDF) master oscillator power-amplifier (MOPA). The house-built PM seeding EDF laser can deliver ∼209fs soliton around ∼1563.7nm, which is then stretched to >15ps using a long piece of normal-dispersion fiber. The wideband spectrum of the ultrashort seeding soliton facilitates the further spectral broadening with nonlinear effects. The soliton stretching decelerates the peak power increase, thus facilitating higher amplified average power. After several stages of pre-amplification, the stretched soliton is fed into the main amplifier constructed with PM large mode area fibers. The output average power is finally amplified to ∼11.51W. The corresponding spectrum spans from ∼1450 to ∼2200nm, indicating that SC is formed due to the induced strong nonlinear effects. The polarization extinction ratio at the output reaches over 18 dB. The PM characteristic potentially enhances the system's resistance to environmental disturbances and eliminates instabilities relating to polarization-mode coupling. Our result represents, so far, the highest SC power directly produced in an EDF MOPA, to the best of our knowledge, especially in a linearly polarized manner. This also suggests a scheme for powerful SC generation that employs direct laser diode pumping and duration-managed pulse seeding.

7.
Appl Opt ; 59(1): 196-200, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32225288

RESUMEN

A passively mode-locked thulium-doped fiber laser using a tungsten ditelluride saturable absorber (${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA) is demonstrated. High-power mode-locked pulses with an average output power of 108.1 mW were achieved by incorporating the ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA into a thulium-doped fiber oscillator. To the best of our knowledge, this is the highest average power obtained from a ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA-based fiber laser. We further amplified the output power to 5.60 W with an all-fiber thulium-doped double-cladding fiber amplifier. Our result indicates that ${{\rm WTe}_2}\mbox{-}{\rm SA}$WTe2-SA could be an excellent candidate for a high-power fiber laser system.

8.
Opt Express ; 27(26): 37172-37179, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878502

RESUMEN

Herein, we present a fundamental and harmonic mode-locked figure-of-9 thulium-doped fiber laser using a nonlinear amplifying loop mirror. The generated fundamental mode-locked h-shaped pulse is centered at 1889 nm with an average output power reaching 282 mW and a pulse energy up to 1.23 µJ, which is the highest power and pulse energy of an h-shaped pulse. In the harmonic mode-locked regime, up to the 8th harmonic h-shaped pulse is obtained. The detailed characteristics of the h-shaped pulse are discussed. The proposed study shows that the figure-of-9 fiber laser can generate h-shaped pulses and also allows the generation of nanosecond pulses with a µJ-level pulse energy.

9.
Opt Express ; 24(11): 12072-81, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27410128

RESUMEN

In this paper, we first achieve nanosecond-scale dissipative soliton resonance (DSR) generation in a thulium-doped double-clad fiber (TDF) laser with all-anomalous-dispersion regime, and also first scale the average power up to 100.4 W by employing only two stage TDF amplifiers, corresponding to gains of 19.3 and 14.4 dB, respectively. It is noted that both the fiber laser oscillator and the amplification system employ double-clad fiber as the gain medium for utilizing the advantages in high-gain-availability, high-power-handling and good-mode-quality-maintaining. DSR mode-locking of the TDF oscillator is realized by using a nonlinear optical loop mirror (NOLM), which exhibits all-fiber-format, high nonlinear and passive saturable absorption properties. The TDF oscillator can deliver rectangular-shape pulses with duration ranging from ~3.74 to ~72.19 ns while maintaining a nearly equal output peak power level of ~0.56 W, namely peak power clamping (PPC) effect. Comparatively, the two stage amplifiers can scale the seeding pulses to similar average power levels, but to dramatically different peak powers ranging from ~0.94 to ~18.1 kW depending on the durations. Our TDF master-oscillator-power-amplifier (MOPA) system can provide a high power 2-µm band all-fiber-format laser source both tunable in pulse duration and peak power.

10.
Sci Rep ; 6: 28885, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27374764

RESUMEN

Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps(2), and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials.

11.
Appl Opt ; 51(36): 8516-20, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23262588

RESUMEN

Photonic crystal fibers (PCFs) are widely used in all-fiber, high-power lasers and supercontinuum sources. However, the splice loss between PCFs and conventional fibers limits its development. Grin fibers and coreless fibers were used as a fiber lens to achieve low-loss, high-strength splicing between PCFs and single-mode fibers (SMFs). The beam propagation method was used to optimize the lengths of grin fibers and coreless fibers for a minimum splice loss. The splice loss changing with the lengths of grin fiber, coreless fiber, and the air-hole collapsed region was systematically studied theoretically and experimentally. Ultimately, a minimum splice loss of 0.26 dB at 1064 nm was realized between a high-nonlinear PCF and a conventional SMF with this method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...